NAVIGATING THE TURBELENT SEAS OF LESION SYMPTOM MAPPING:

COMPARATIVE ANALYSIS OF UNIVARIATE AND MULTIVARIATE LESION SYMPTOM MAPPING METHODS

+ 1 + 12 + 17

Ivanova, M.V.^{1,2,3}, Herron, T.³, Curran, B.³, Dronkers, N.F. ^{1,3,4}, & Baldo, J.V.³

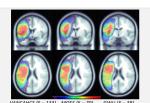
¹UC Berkeley; ²National Research University HSE, Russia; ³VA Northern California Health Care System, CA ⁴UC Davis

INTRODUCTION & AIMS OF THE CURRENT STUDY

Lesion symptom mapping (LSM) tools are used to identify brain regions critical for a given behavior.

- Univariate lesion-symptom mapping (ULSM) methods provide statistical comparisons of behavioral test scores in
 patients with and without a lesion on a voxel by voxel basis.
- Multivariate lesion-symptom mapping (MLSM) methods consider the effects of all lesioned voxels in one model simultaneously and analyze their contribution to behavior.
- Very little systematic work has been done to empirically outline advantages and disadvantages of these methods.

In the current study we conducted a comprehensive comparison between ULSM and MLSM methods by analyzing their performance under varying conditions.


- Using artificial behavioral data investigated single / dual (network) / zero (pure false positive) anatomical target simulations.
- Explored influence of various factors: anatomical target location, sample size, behavioral noise level, and lesion smoothing.
- Investigated mapping power and spatial accuracy.

METHODS: Simulation procedures

Lesion masks from 404 left hemisphere stroke patients:

- Our own database at the VA Northern California Health Care System (n = 209),
- Moss Rehabilitation dataset (n=131) distributed with the LESYMAP software (Pustina et al., 2018);
- George Washington University dataset (n=64) distributed with the SVR software (DeMarco & Turkeltaub, 2019).

For each simulation analysis, the specified number of lesion masks were randomly selected from one of the three datasets (without mixing them together).

LSM Cluster

COM

Anatomica

сом

Artificial behavioral scores were based on lesion load to atlas-based anatomical ROIs:

- 16 larger or 30 smaller anatomical ROIs
- Based on grey matter areas in the left middle cerebral artery region from FSL's version of the Harvard-Oxford atlas and thresholded at 50%.
- Used 16 such parcels that had 5% or greater area within at least 25% of the lesion masks
- To create a set of smaller parcels, each of these 16 parcels was divided into two sections along the axis of maximal spatial extent.

Other parameters explored:

- sample size: n = 32,48,64,80,96,112, 128, & 208;
- behavioral noise level: 0, 0.36, or 0.71 SD of normalized behavioral scores;
- lesion smoothing: 0 mm or 4 mm Gaussian FWHM.

Evaluation measures

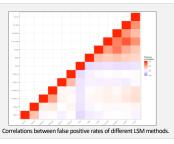
- Power: proportion of trials that yielded any significant LSM statistical values;
 Spatial accuracy:
- Distance-based (for single target only): mean centroid location (COM), mean centroid location weighted by statistical values (wCOM) & maximum statistic location (Max) of the LSM output map:
- Overlap-based: dice coefficient & one-sided Kuiper (OSK) distribution difference;
- False-positive effects: proportion of trials that yielded above threshold LSM statistic (non-desirable outcome in this instance), and the number and the size of the false positive clusters produced.

We varied these factors in a fully crossed manner in order to systematically compare effect sizes and significance across the different ULSM and MLSM methods for single / dual (network) / zero (pure false positive) anatomical target simulations.

RESULTS: Dual (network) anatomical target simulations

Three types of networks considered

- Redundant minimum lesion load of the two target parcels is used to generate the synthetic behavioral score,
 Extraoded controlly single target, approached on the two parcels;
- Extended spatially single-target average lesion load of the two parcels;
 Fragile maximal lesion load of the two parcels.


Power evaluation

| Use manual | Company | Com

ccuracy evaluation: one-sided Kuiper distribution statistic			
LSM method	Redundant	Extended	Fragile
T-max	-0.35	-0.1	-0.17
T-0.0001	-0.23	-0.02	-0.11
T-0.001	-0.1	0.1	0
T-0.01	0.04	0.23	0.13
T-nu=125	-0.19	0.06	-0.02
SVR	-0.43	-0.27	-0.34
PLS	-0.02	0.06	0.03
ICA-L1	-0.38	-0.07	-0.16
ICA-L2	-0.17	0.12	0.04
LPCA-L1	0.07	0.31	0.23
LPCA-L2	0.13	0.34	0.27
SVD-L1	0.11	0.37	0.29
SVD-L2	0.07	0.39	0.3

RESULTS: Zero (false positive) anatomical targets simulations

LSM method	# of Clusters	# of Voxels
T-max	1.5	17
T-nu=125	4.5	312
T-0.0001	1.2	73
T-0.001	1.0	452
T-0.01	1.0	2323
SVR	1.5	17
PLS	5.8	2435
ICA-L1	4.4	715
ICA-L2	4.6	719
LPCA-L1	5.6	1619
LPCA-L2	5.3	1876
SVD-L1	6.9	873
SVD-L2	7.3	963

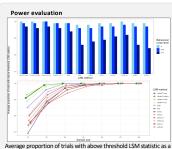
METHODS: LSM methods evaluated

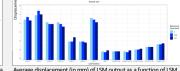
Univariate LSM *

T-max Maximum t-value
T-nu=125 125th highest t-value (Mirman et al., 2018)

T-0.0001 cluster size when p<0.0001 T-0.001 cluster size when p<0.001 T-0.01 cluster size when p<0.01

* All ULSM methods used linear regression at every voxel plus permutation testing to set familywise (non-parametric FWER) thresholds based on five different criteria listed above.

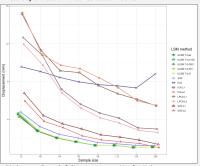

Multivariate LSM **

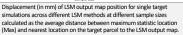

SVR Support vector regression
PLS Partial least squares (dense)
ICA-L1 ICA - Independent
ICA-L2 component analysis
LPCA-L1 LPCA - Logistic principal
LPCA-L2 component analysis
SVD-L1 SVD - Singular value
SVD-L2 decomposition

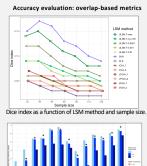
** L1 – elastic net regression; 95% L1 penalty; L2 – elastic net regression; 95% L2 penalty

Accuracy evaluation: distance-based metrics

RESULTS: Single anatomical target simulations






Average proportion of trials with above threshold LSM statistic as a function of LSM method, behavioral noise level and sample size.

Average displacement (in mm) of LSM output as a function of LSM method, sample size and behavioral noise level.

Accuracy evaluation: distance-based metrics

One-sided Kuiper distribution statistic as a function of LSM method, behavioral noise level and mask smoothing.

DISCUSSION

Single anatomical target simulations demonstrated:

- Good spatial accuracy for ULSM methods with conservative FWER thresholds and some of the simpler DR (e.g., SVD-based) and regression-based (e.g., SVR) MLSM methods;
- Variable accuracy across spatial locations, with especially poor performance in cortical locations on the edge of the lesion masks (areas of lower power);
- More accurate localization with lesion mask smoothing for all LSM methods;
- The importance of having a sample with ≥ 64 patients (with the majority of MLSM methods requiring on average 10-20 more patients to achieve a ULSM level of spatial accuracy);
- Robustness of the maximum statistic as a measure of LSM statistical map location.

Dual anatomical target simulations showed:

- More accurate localization with some of the DR MLSM techniques (e.g., LPCA) as well as ULSM methods with relatively liberal cluster-based FWER thresholds;
- The importance of having a sample with at least ≥ 100 patients.

False positive simulations revealed:

 Cluster sizes were generally the lowest for ULSM methods with conservative FWER thresholds and regression-based MLSM methods.

CONCLUSIONS

- Our simulations show no clear superiority of MLSM techniques over the ULSM methods
- Depending on the design of a particular LSM study and specific hypothesis regarding the expected brain-behavior relationship, different LSM methods are indicated.
- It is advantageous to implement both ULSM and MLSM methods in tandem to enhance confidence in the results, as significant matching foci identified with both methods are unlikely to be spurious.